1.现象
EH系统的正常工作油温为20~60℃,当油温高于57℃时,自动投人冷却系统。如果在冷却系统已经投人并正常工作的情况下,油温持续在50℃以上.则认为系统发热量过大。油温过高。
2.原因分析及解决方法
2.1油温过高排除环境因素之外,主要是由于系统内泄造成的。此时,油泵的电流会增大。造成系统内泄过大的原因主要有以下几种。
(1)系统安全阀泄漏。系统安全阀的溢流压力应高于泵出口压力2.5~3.0MPa,如
果二者的差值过小,会造成安全阀溢流。此安全阀的回油管会发热。检查安全阀工作状况,如定值偏低应调整其定值。如安全阀有泄漏,应利用停机机会解体检查消除其泄漏。
(2)蓄能器短路。正常工作时蓄能器进油阀打开,同油阀关闭。当回油阀未关紧或阀门不严时,高压油直接泄漏到回油管,造成内泄。此时,阀门不严的蓄能器的回油管会发热。检查蓄能器工作状况,防止EH油的不正常泄漏。
(3)伺服阀泄漏。当伺服阀的阀口磨损或被腐蚀时,伺服阀内泄增大。此时,该油动机的回油管温度会升高。
(4)卸荷阀卡涩或安全油压过低。当油动机上卸荷阀动作后发生卡涩会造成泄漏,泄漏大时油动机无法开启,泄漏小时造成内泄。此时,该油动机的回油管温度会升高。当安全系统发生故障出现泄漏时,安全油压降低,会使一个或数个卸荷阀关不严造成油动机内泄
(5)EH油管道布置不合理,油管道大多裸露布置,尤其是机头附近的油管,接受过多的辐射热,成为局部过热点,此处的油温超出了正常的温度范围,加速EH油的老化,从而引发一系列问题;
(6)滤网、冷油器堵或冷却水水温过高,循环不畅。如某电厂#6机组EH油冷却水有两套水源,一套为生活水;一套为稳压水箱来水,作为备用水源。运行期间EH油温经常偏高,经分析检查发现,生活水水温过高,后来在#6机小修期间将生活水改为深井水。冷却水温度降低了,EH油温也降低了。
六.DEH硬软件的故障处理
1.VCC卡故障
VCC卡可能出现的故障包括:与BC板通信中断;VCC板停止运行;LVDT调整电路异常;综合放大回路异常等。
1.1某厂2号机GV3调门运行中发现有小幅摆动,经检查发现VCC卡中LVDT变送器外壳与电路板之间存在短路现象,于是在VCC卡中LVDT变送器外壳与电路板上加装上隔离片,消除了VCC卡中线路短路问题。由于其具有通用性,因此,DEH系统中所有VCC卡都加装了隔离片。
1.2确定故障在VCC卡后,应当首先确认该VCC卡的故障是否可以通过在线调整解决。如无法调整,确认需更换时,必须保证机组运行的安全及负荷的稳定,即防止产生阀门突然全开或全关。如在线更换VCC卡时,应按以下方法进行:
(1)当VCC卡控制的阀门处于全关位置,且DEH输出指令为0时,可将机组DEH控制切至手动位置,然后拔下该VCC卡,确认新的VCC卡型号、跳线及软件版本与原VCC卡相同。插入新VCC卡,并检查其工作是否正常。按照VCC卡LVDT调整方法,整定零位、满度、放大倍数及偏置电压等。确认控制系统工作正常、状态正确、跟踪良好后,投入自动。注意在调整过程中,必须保证机组安全及负荷稳定。
(2)当该VCC卡控制的阀门不处于全关状态或DEH输出指令不为0时,必须通过阀门全行程试验,强制DEH指令使阀门开度逐渐到0后,再更换VCC卡。同时,可考虑投入功率回路,在关小阀门过程中,负荷维持稳定。指令到0、阀门全关后,再进行处理。
VCC卡件电源环线端子松动故障的处理和防范措施
1.3实例
2002年11月28日22:10时,某厂运行人员发现3号机组DEH系统OIS上显示高调1、高调2、中调1、中调2频繁出现全关现象,实际检查也是如此,严重影响了机组安全稳定运行,为了维持机组继续运行,值班人员与班长两人商议暂时采用电池把1号高调门、2号高调门全开(中调1、中调2用电池也全开),维持系统运行。同时通知检修人员迅速到现场查找原因,由于现象具有共性,调门指令没有变化而调门频繁出现全关、全开现象,椐此检修人员判断卡件电源可能有问题。于是对卡件电源彻底检查时,发现VCC卡的+5V电源环线端子松动造成调门故障,重新紧固+5V电源端子,用万用表检查其它电源正常后,撤电池,使系统恢复遥控运行。
7月6、7日,IV1、IV2的LVDT阀门位置反馈3次从全开位置突关,负荷突降约100MW,再热器压力突升0.31MPa,4S内自动恢复;12日.3号机组再次出现6次负荷突降,降幅为10~50MW.5S内自行恢复,查高调门不同程度关过,中调门f已强制开)、主汽门未动,断开OPC板至VCC板信号线后,出现高、中调门小幅关闭15次.负荷突降.调门大幅关闭5次,最后一次高中调门全关,负荷到零DEH切手动开调门负荷突升。引起锅炉水位波动大,MFT保护动作。后断开OPC电磁阀电源13日,3号机组6个调门大幅度波动至零,调门全关,锅炉MFT保护动作,运行人员紧急DEH切手动开启调门手动无效,机组逆功率保护动作跳机、炉。上述故障特点是调门指令不变。调门自关。主汽门不动,且OPC电磁阀已停电,判断为OPC电磁阀体部分故障,机组停运后,更换2只OPC电磁阀、1只AST电磁阀和1块DI板,解除所有强制点,但机组启动后故障仍然出现9次,机组被迫强迫停运。
原因分析:
机组停运后进行静态仿真和混合仿真试验,最终查证调门突关原因为原GV4、GV3卡件(之一)OPC信号进入VCC板的输入端因信号发生间歇性短路故障,造成OPC信号误发,通过总线使各调门指令S值清零,造成阀门瞬开瞬关、且关闭后在手动开启失效的现象。在VCC板至总线板输出端均置有电容,各VCC板OPC信号触发电平不一致,故各阀门动作不一致。分析认为,是由于VCC卡上高频变压器积灰等原因.造成高频变压器金属外壳与总线板出现间歇短接,造成信号间歇短路,引起OPC信号误发。
故障处理:
对VCC卡结构进行相应改进,现将所有VCC板高频变压器底部加装垫片做好可靠绝缘措施.加强定期清扫工作,防止接点短路造成信号误发,同时要严格控制热工电子间温度湿度,保证设备运行环境,提高运行可靠性,有效防止了类似事件的发生。
2.基本控制计算机过热死机
某厂曾发生1号机DEHA、B基本控制计算机主板温度过高的死机现象,经检查发现386/12主板工作时发热量较大,主机箱内其它插件板与主机板很近,长时间运行时机柜内热量不能及时散放出去,因此,为保证主机正常工作,将DEH主机箱加装风扇板。
3.DEH控制器负荷高
某厂DEH的机柜硬件配置采用的是一对互为冗余的DPU,DEH机柜通讯负荷率长期处在5O的较高水平上,紧急情况下容易造成通讯数据的堵塞,造成DEH系统的瘫痪。为解决DEH机柜通讯负荷率过高的问题,我们采用了2对DPU,将在3机中1对DPU完成的功能分散至2对DPU中,改造后DEH机柜通讯负荷率降到25左右。
4.DEH控制系统跳闸逻辑的修改
为了确保汽轮机的安垒、稳定运行,DEH的跳闸逻辑功能修改为在各种控制方式下均起作用,为了防止汽轮机轴承金属温度高、轴承回油温度高和推力瓦的工作面与非工作面温度高信号误发造成跳机,汽轮机跳闸逻辑修改为:
·汽轮机任一轴承温度高与该轴承的回油温度高均存在则跳机。
·汽轮机推力瓦的工作面与非工作面各l1点温度中,均采用11取2的跳机逻辑
5.ETS(EmergencyTripSystem)控制柜24V辅助电源故障
5.1某厂2005年6月6日下午15时,1号机组冲转至1613r/min,2号轴承振动达0.27mm,汽机ETS首跳记忆“轴振保护动”,但DEH保护未动作,运行人员手动紧急打闸。分析ETS控制回路逻辑,发现逻辑回路正确,动作的开关量点已经输出。分析这种情况的保护拒动可能是继电器回路动作不可靠造成。经过检查,发现ETS机柜开关量输出模块辅助电源DC24V电源保险熔断,致使该电源所带的ETS继电器柜的24V继电器未动作,致使由ETS机柜送入DEH机柜的“ETS跳闸”开关量信号未送出,保护拒动。
5.2故障处理
经过分析逻辑及柜内接线图,决定从ETS机柜的软、硬件回路予以完善。具体措施如下。
(1)从运行操作台单独提供一路手打停机信号直接送入DEH继电器柜硬跳闸回路,确保Ovation机柜卡件外供电源故障时,实现运行人员紧急停机。
(2)ETS机柜增加开关量模块直接送出跳闸信号至DEH继电器柜。
(3)在软硬光子牌中增加DEH110VDC失电报警,在软光子中增加所有内供电模块失电报警的画面
6.单多阀切换及应流量曲线不准引起负荷在某一点晃动
单阀切顺序阀控制时,DEH的阀门管理程序会根据系统的蒸汽流量请求值,计算顺序阀控制时每一个调门的阀位值;对每一个调门,算出目前单阀控制时的蒸汽流量与待转换顺序阀控制方式下应有的蒸汽流量的差值。切换时,阀门管理程序以切换前的负荷指令为依据,并根据阀门流量特性曲线确定待转换控制方式下的阀位值,当阀门流量特性曲线与机组真实值差别较大时,切换后负荷波动就会比较大。可见,阀门流量特性曲线严重偏离机组的实际情况导致控制方式切换时负荷的大幅度波动。应重新测定阀门的蒸汽流量特性曲线,优化DEH控制系统的阀门管理程序。
7.DEH组态丢失
某厂2003年7月9日2:15时,1号机组准备冲转,运行人员发现在OIS上无法输入目标值,通知检修人员到现场,在OIS上和EWS上还是无法输入,检修人员初步认定是死机,可经复位,仍不好用。检查组态,发现程序丢失了30页,重装组态后,故障排除。为了查清30页丢失的原因,检修人员查阅了历史记录,并经分析,发现是前几天UPS电源和保安段电源互切造成的;DEH系统DPU11和DPU31分别是UPS和保安段电源供电,当时DPU11先断电,DPU31切为主控,这过程中拷贝组态时,保安段又断电,致使拷贝组态不全,造成丢失。
七.电液伺服阀本身故障
电液伺服阀本身故障是指伺服阀控制系统短路或断线,零部件腐蚀、密封件损坏造成泄漏,滤油器堵塞造成油流不畅等。造成伺服阀本身故障的原因较多,如抗燃油油质不合格,抗燃油油温过高,其颗粒度、酸性等指标超过规定标准等,都会导致
抗燃油油质下降,使电液伺服阀工作不正常。综上所述,高压抗燃油油质不合格,油温过高及水解、酸性腐蚀等是造成伺服阀故障的主要原因,但也不能忽略其它原因的存在。主要有:
1.伺服阀热工偏值设定不准,造成伺服阀漏流。
来源: