ICL7650 CMOS 斩波集成运放简介及应用
摘 要:介绍了ICL7650 CMOS 斩波集成运算放大结构和性能,输入级使用MOS 场效应管,采用斩波自动稳零结构,附带调制和解调等措施,具有输入偏置电流小,低失调电压和温度漂移以及精密的反馈特性和高的共模抑制比能力。并采用该器件实现了一个积分电路,该电路零位可以调整,抑制干扰,降低噪声,是很好的传感器信号预处理电路。
关键词: ICL7650 ;运算放大器;积分电路;MOS 场效应管
1 引 言
集成电路是在半导体制造工艺的基础上实现元件、电路和系统三结合的一种半导体器件。随着制造工艺的进步,电路性能设计的完善,集成电路正以无可比拟的优异性深入到各个领域。一般,集成运放是具有高放大倍数的直接耦合电路,这样就不可避免地存在着失调和漂移等问题,长期以来人们一直致力于上述问题的解决。一般集成运放具有mV 级的失调电压和每度数微伏的温度漂移,因而将集成运放直接用于0~10 mV 的低电平放大是十分困难的。然而在工业自动化控制、过程控制、多路选择巡扦等很重要的应用场合,运放被用于放大来自传感器、变送器等所谓“一次仪表”的信号,这些信号的特点往往是具有低电平的性质,对外界一些干扰信号极为敏感,这就要求用作前置放大器的集成运放具有高的输入阻抗,低的输出阻抗,低失调电压和温度漂移以及精密的反馈特性和高的共模抑制比能力[1 ] 。否则造成的漂移问题将使系统无法正常工作,ICL7650 正是为适应上述要求而研制成功的。
2 ICL7650 性能介绍
ICL7650 的制造工艺采用大规模集成电路机制,输入级使用MOS 场效应管,输入电阻达100 MΩ 以上,将场效应管和双极型管兼容在一个硅片上,并且还附带调制和解调等措施,采用斩波自动稳零结构,使失调电压和温度漂移进一步下降,应用时一般无需调零即可使用,极为方便。图1 为ICL7650 的原理方框图及管脚排列。
图1 ICL7650 的原理方框图及管脚排列
由图1 可以看出,ICL7650 的整个电路由下列几个部分构成:
(1) 内部时钟发生器用以控制图中电子开关SA 和SB 的通断。当14 脚(内/ 外端) 置“1”或置空时,工作在内时钟状态;若置“0”时,则工作在外时钟方式下,外时钟从13 脚(外部时钟输入端) 加入。
(2) 主放大器A1 用以放大输入信号并经他输出,N1端为他的第3 个同相输入端。
(3) 调零放大器A2 用以降低A1 直流失调的放大器,他不对外输出信号,仅是作为一种辅助放大器使用,N2 为他的一个反相输入端。
(4) 箝位输出电路用以防止因过载而出现的放大器阻塞。
(5) 内调制补偿用以改善电路的频率特性。
(6) 模拟开关完成电路动态校零工作过程的切换,靠时钟控制下的模拟开关来转换。电路的整个工作在时钟控制下分2 个工作阶段进行,放大器误差检测与寄存;校零和放大,使稳态实现低失调与低温漂。
总的来说,ICL7650 有如下几个特点:
(1) 极低的输入失调电压:整个工作温度范围(约100 ℃) 内只有±1μV ;
(2) 失调电压的温漂和长时间漂移极低:分别为0. 01 μV/ ℃和100 nV / Month ;
来源:现代电子技术