三、 电网过电压的保护措施
1. 装设避雷针保护
避雷针能有效地将雷电流引向自身而安全入地,是保护直击雷的有效措施。变电所及电气设备一般采用避雷针进行保护,其保护范围取决于避雷针高度与根数,若采用多根避雷针保护,其范围更大效果更好。同时,为防止反击事故,避雷针的接地网设置与接地电阻值一定要符合技术规范,并使之与构架、变压器、断路器等设备之间距离满足技术要求,才能取得良好的防雷保护效果。
2. 架设避雷线进行保护
在变电所近区电源进线上方架设避雷线保护,可使电源进线遭受雷电侵入波的概率大大减少。若在避雷线以外线路上落雷时,由于进线段导线本身阻抗作用,使流过避雷器的雷电流受到限制,又由于导线上的冲击电晕的影响,使雷电侵入波的陡度和幅值下降,从而使保护变压器的避雷器动作残压降低,有利于与变压器绝缘的配合,因而对变压器的防雷起到起良好作用。
3. 装设避雷器进行保护
电网保护过电压的避雷器,无论是无间隙的氧化锌避雷器,还是有间隙的普通阀式避雷器,器选择使用的一个共同原则是:避雷器的额定电压应不低于避雷器安装地点的暂时过电压;变压器中性点避雷器的额定电压应不低于变压器的最高相电压。若避雷器的额定电压选低了,对阀式避雷器而言,若线路发生单相接地故障时,由于变压中性点出现过电压而无法灭弧造成爆炸;对无间隙氧化锌避雷器,同样将使其在一次过电压下吸收能量过多而劣化损坏。反之,若避雷器额定电压选择高了,则相应的冲击放电电压和残压将增大,保护电气设备的限压效果将变得不好。
对于有间隙的普通阀式避雷器,其阀片的阻值是随通过的电流而变化的,当很大雷电流通过阀片时,其非线性电阻呈现很大电导率,使避雷器残压不高。在正常电压时非线性电阻的电导率将下降,把工频续流限制到很小的数值,为火花间隙切断续流创造了良好条件,使避雷器短时间作用的冲击放电电压减小,从而保护了变压器的安全运行。
在变压器防雷保护中采用了“三位一体”的接地方式,其接地装置及接地电阻值能否满足技术要求,避雷器与变压器之间电气距离能否实现“零距离”,这是变压器能否得到有效保护的关键。因变压器遭受雷击时,雷电流经接地电阻也会产生电压降,此电压与残压叠加后一起作用在变压器绕组上,同样也会威胁到变压器的安全。
总之,避雷器的防雷效果,取决于避雷器的残压、侵入波陡度及避雷器与变压器之间电气距离。在避雷器的选择上,必须使其伏秒特性上限低于变压器伏秒特性下限,避雷器残压也应小于变压器绝缘耐压允许程度,其数值也应小于冲击波的幅值,这样的避雷器才会有保护过电压的效果。
4. 变压器中性点过电压的保护
变电所处于多雷区又是单电源进线,其三相雷电侵入波机率较多,故主变压器中性点需装设避雷器保护。变压器中性点过电压保护的设置,可单独采用专门保护变压器中性点的设置,可单独采用专门保护变压器中性点的无间隙氧化锌避雷器(简称中性点MOA)。采用中性点MOA,可保护雷电过电压及操作过电压。其优点是:动作灵敏、残压低、通流容量大,对保护主变压器中性点免遭过电压具有良好效果。
此外,现今的中性点MOA的额定电压较高,当中性点电位偏离不大时,MOA仍有较好的保护效果。若有效接地系统发生单相接地故障时,主变压器中性点将产生一倍的工频相电压,此电压也不会对MOA造成损坏。
来源:电力自动化产品信息