4 GIS的外壳接地问题
GIS的外壳接地方式有两种,一种是一点接地方式,另一种是多点接地方式。一点接地方式是在GIS外壳的每个分段中一端绝缘,另一端用一点接地的方式。在结构上,串联的壳体之间一般是在法兰盘处绝缘,对地之间是在壳体支座处缘绝缘。这种接地方式的优点是:因为长时间没有外壳电流通过,故即使电流额定值大,外壳的温升也较低,损耗也较小;因为没有电流流入基础部位,故土建钢筋中没有温升。当然它的缺点也很突出,即事故时不接地端外壳感应电压较高,外界的磁场也较强,当导体中流过的电流较大时,往往会使外壳钢筋发热,由于只有一根接地线,因此可靠性较差。目前国内GIS设计一般不采用这种外壳接地方式。多点接地方式是在GIS的某个分段内,用导体连接外壳和大地,并且采用两点以上的多点接地。一般在结构上,串联的法兰盘之间不设绝缘,设备的支座不绝缘,并用固定螺栓导通,接地线也装于壳体。多点接地的优点很多:外部磁漏少,感应过电压低;由于GIS外壳有两点以上的接地点,因而可大大提高其可靠性及安全性;不需要使用绝缘法兰等绝缘层,施工方便;外壳和导体电流几乎抵消,因此外部磁场较小,使钢构发热和流过控制电缆外皮的感应电流都很小。由于外壳中有感应电流流过,因此外壳中的温升和损耗比一点接地方式大。但电站GIS工程中外壳损耗本身不大,因此在工程中可以忽略补给。例如:广州抽水蓄能电站 GIS外壳的功率损耗为2.43~3.79W/(m·ph),可以略去不计。
5 GIS设计中有待完善的工作
根据近年来GIS工程的设计经验,笔者认为在设计标准化中尚有一些空白点亟待解决。因为设计标准是整个设计过程的依据,设备接口标准是制造商的制造依据。
首先是伸缩节的设置问题,尤其是在选用进口GIS设备时对伸缩节的技术要求。伸缩节主要是用来吸收GIS母线热胀冷缩、基础伸缩缝的位移、设备间的安装调整以及地震和操作引起的位移量,因此主要配置在母线与各设备、变压器进线、线路出线的连接等位置。而在水电站的厂房中,厂坝间的伸缩缝很多,每条伸缩缝的伸缩量无法准确测出,因此在GIS的招标设计中应对伸缩节提出较高的要求。 如果采用进口GIS设备,国外厂家对伸缩节的看法不一,某些厂家认为完全可以满足设计要求的水平位移和垂直位移,而有的厂家认为土建伸缩缝与伸缩节关系不大。 我国国标规定“制造厂应根据使用的目的、允许的位移量等来选定伸缩节的结构”,“在 GIS分开的基础间允许的相应位移(不均匀下沉)应由制造厂和用户商定”。为了确保在与外商的技术谈判中有据可依,更为了确保GIS设备运行的安全可靠性,在我国的标准中应增加伸缩节方面的量化计算和要求。
其次是GIS接地线的材料和尺寸。这往往是与GIS外商谈判中讨论较多的问题。国外制造商都主张GIS室采用铜接地网和铜接地引线,因为铜的导电性和耐腐蚀性优于钢,但由于铜本身成本以及焊接成本都很高,因此我国电站大多采用钢接地网和钢接地线。目前国内超高压 GIS均采用铜接地引线。铜引线与钢接地网之间的连接需采用特殊方式,以防止钢与铜直接接触发生化学腐蚀现象。
另外,国外厂家根据GIS的热稳定电流来计算接地线截面,并有具体的计算公式和曲线,计算的参数包括接地的短路电流、故障的持续时间、接地线相应的允许温升值,其中接地线熔断相应的允许温升值起决定作用,有些厂家采用的允许温升值为100℃,这样选出的接地线截面就小一些,而有些厂家采用的允许温升值为 200℃,这样选出的接地线截面就大一些。我国的规范要求采用流经接地线的短路电流、导体的热稳定系数、故障持续时间进行接地导体的截面计算,因此,常常会出现接地截面不符合制造商要求的情况。对此我国规范中应就接地线的规格和尺寸作出相关规定。 上述问题是在GIS设计过程中不可避免的,也是亟待完善的,只有尽快制定出相应的标准,才可以保证设计质量和产品质量,并尽可能减少设计中的不完善环节及运行中的隐患。在标准制定之前,希望广大设计人员能了解这些问题,在设计过程中予以充分考虑,并借鉴其它电站的解决措施,尽可能保证设计质量。
来源:中国开关电器网