| | |
GTO-PWM式电流源型变频器采用GTO作为逆变部分功率器件,见图5。GTO可以通过门极进行关断,所以它不象晶闸管那样需要用于强迫关断的换流电路,可使主电路结构简化。对于额定电压为交流6KV的变频器,逆变器侧可采用每三个6000V的GTO串联,作为一个开关使用,一共由18个GTO组成,GTO串联时,同样存在稳态和动态均压问题。
GTO是在晶闸管基础上发展起来的全控型电力电子器件,目前的电压电流等级可达6000V,6000A。GTO开关速度较低,损耗大,需要庞大的缓冲电路和门极驱动电路,增加系统的复杂性和成本,使其应用受到限制。GTO中数千只独立的开关单元做在一个硅片上,由于开关不均匀,需要缓冲电路来维持工作,以限制器件承受的dv/dt,缓冲电路一般采用RCD型结构,二极管和电容必须有与GTO相同的耐压等级,二极管要求用快恢复二极管。缓冲电路的损耗产生热量,影响器件的可靠运行,并且影响变频器的效率。为了降低损耗,也有采取能量回馈型缓冲电路的方案,通过DC/DC变换电路把缓冲电容中储存的能量返回到中间直流环节,但增加了装置的复杂性。GTO的开关频率较低,一般在几百赫兹,比如300HZ。
以6000V,3000A(最大可关断阳极电流值)的GTO为例,通态平均电流为1030A,通态压降3.5V,门极开通触发电流1A,通态阳极电流上升率400A/us(f=200HZ条件下),滞后时间2.5us,上升时间5us,存储时间25us,下降时间3us,最小通态维持时间100us,最小断态维持时间100us,开通每脉冲能耗2.5Ws,关断每脉冲能耗16Ws。GTO的门极驱动,除了需要晶闸管一样的导通触发脉冲外,还需要提供相当大的的反向关断电流,上述GTO的门极峰值关断电流就达900A,所以GTO的门极驱动峰值功率非常大。
与输出滤波器换相式电流源型变频器相比,GTO-PWM式电流源型变频器输出滤波电容的容量可以大大降低,但不能省去。因为电机可近看作漏电感再加一个旋转反电势组成。电流源型变频器的输出电流幅值是由整流电路的电流环决定的。在换流过程中,由于流过电机电感的电流不能突变,所以必须有电容缓冲变频器输出电流和电机绕组电流的差值。电容容量的选择取决于换流过程中允许产生尖峰电压的大小。由于输出电容的容量比起输出滤波器换相式电流源型变频器大大下降了,电容的滤波效果也跟着下降,输出电流波形的质量也会下降。电机电流质量的提高可以通过GTO采用谐波消除的电流PWM开关模式来实现。在低频时,输出电流每个周期内相应的PWM波形个数较多,谐波消除会比较有效。但是,由于受到GTO开关频率的限制,高速时谐波消除效果大大下降,图6为该变频器满载时输出电压电流波形。若整流电路也采用GTO作电流PWM控制,可以得到较低的输入谐波电流和较高的输入功率因数,当然系统的复杂性和成本也会相应增加,一般很少采用。
来源:中国电力技术资讯
《高压变频器基础教程[第4讲]——一、GTO-PWM式电流源型变频器(二)》的相关文章
《高压变频器基础教程[第4讲]——一、GTO-PWM式电流源型变频器(二)》的相关新闻